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Abstract A good PoincarC section of a classical dynamical system defines a mapping that 
provides essential qualitative information about its orbits. Bogomolny's sections in quantum 
mechanics lead to an eigenvalue condition that depends on the Poincar6 map in the semi- 
classical limit. The conditions for the Construction of purely quantum mechanical 
Bogomolny-Green functions are discussed here with reference to separable systems. For 
appropriately chosen Green functions the ensuing eigenvalue condition is shown to be exact. 
This result is valid even if not a single classical orbit crosses the surface of section. 

1. Introduction 

The Poincar6 surface of section is a valuable instrument of classical dynamics. If almost 
all the orbits cross the section, almost all the periodic orbits of the classical system will 
appear as periodic points of the PoincarC map. These periodic orbits and periodic points 
will proliferate exponentially with period in both the system and the map if they are 
chaotic. We likewise find that all the other principal qualitative features of the continu- 
ous system are deducible from the map in its reduced phase space. 

The energy spectrum of a quantized system is related to the classical periodic orbits. 
In some special cases the correspondence is exact (the Selberg trace formula), whereas 
generally the relation is achieved by the Gutzwiller trace formula, which is a semiclass- 
ical approximation (Gutnviller 1990). The following questions thus arise: If the eigen- 
values are related to the periodic orbits and these intersect the Poincar6 section, can 
we obtain the spectrum from a reduced quantum map defined on the section? Would 
this result be exact or only a semiclassical approximation? 

The construction of a quantum map over a section, such that its Green function 
supplies the eigenvalues of the surrounding Hamiltonian, was achieved by Bogomolny 
(1990, 1992). In the first paper Bogomolny constructed directly a semiclassical Green 
function, but he later derived it from the convolution of two Green functions defined 
on either half space resulting from the section of the full space. Even so, the main effort 
was directed there to the derivation of the Gutzwiller trace formula as an expansion of 
the ensuing quantization condition. Because of this, semiclassical arguments permeate 
the discussion, obscuring a point of paramount importance: if the Bogomolny condition 
can be stated in exact quantum mechanical terms, then the conditions for finding a 
good Bogomolny section must depend only on the quantum mechanical features of the 
system. To invoke the classical orbit structure is important for the understanding of 
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the semiclassical approximation of the eigenvalue condition, but it cannot precede the 
definition of the Green function. 

The purpose of this paper is to discuss the construction of Bogomolny’s section and 
eigenvalue condition prior to any semiclassical approximation. Section 2 presents a 
one-dimensional interpretation of the theory for general Sturm-Liouville problems, 
since these arise naturally in the separation of variables in the SchrBdinger equation. 
This is compared with the deduction of the eigenvalue condition for higher dimensions, 
recapitulated in section 3. The one-dimensional Green functions constructed in section 
2 are then used to construct the full auxiliary Green functions of separable systems in 
section 4. 

The main result is that the general Green functions admitted in Bogomolny (1992) 
can lead to spurious zeros of the eigenvalue condition of separable systems. However, 
the use of purely outgoing (or purely incoming) Green functions renders Bogomolny’s 
condition necessary and sufficient for these special systems even in the case that the 
section is only accessible through tunnelling. Section 6 discusses the difficulties of gen- 
eralizing the exact theory to non-separable systems. 

A M Ozorio de Aliiieida 

2. The eigenvalue problem in one dimension 

In certain special cases it is possible to separate the variables of the time-independent 
SchrBdinger equation in a given region V of Ldimensional configuration space. The 
energy eigenvalue problem is then reduced to the Sturm-Liouville problem (Smirnov 
1964) 

with the boundary conditions 

dv dv 
dx dx (2.2) alu(al, n)+p1 - (al, n)=o azo( -az ,  A) + p 2  - (-a2, A)  = 0. 

It makes no practical sense to solve an eigenvalue problem by means of the prelimin- 
ary solution of two problems each of which is essentially identical to the given one. 
None the less, this is the basis of Bogomolny’s general reduction of an eigenvalue 
problem to a condition on a single surface of section. In one dimension the surface 
reduces to a single point, x=O, without loss of generality. We thus consider a pair 
of Green functions on both sides of the origin satisfying the two related self-adjoint 
equations 

(2.3) =S(x-x’) (-4 <X<U]) 
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with 

(2.4) 

and 

= 6(x - x')( -a* < x < ai) (2.5) 

with 

For x > O  the functions vI(x), sI(x) and tl(s) coincide with ~ ( x ) ,  s(x) and t(x), whereas 
the latter are identical to r2(x), s2(x) and t2(x) for xS0. If we choose Y<O, then 
gl(x, x', d) is a solution of (2.1) for x>O, satisfying the first boundary condition (2.2). 
We may analytically continue this solution as far as x=-u2, if r.(x), s(x) and ((x) are 
analytic functions, but generally it will not satisfy the second condition (2.2). Likewise 
we may consider g*(x, x", d) with x">O as a solution (2.1) for x<O that satisfies the 
second condition (2.2). 

Two solutions v(x) and tv(x) of the linear equation (2.1) will be linearly dependent 
if and only if the Wronskian 

d d C u(x)-w(x)-w(x) -u(x)=- 
dx dx r.W (2.7) 

is identically zero. I t  follows that, if r(0) $0, the two Green functions defined above 
match within a scale factor at x=O to form a solution of the Stutm-Liouville problem 
for the ds such that 

Alternatively, we may say that (2.8) is the condition for the analytical continuation of 
gl(x,x',d) to satisfy (2.1) and (2.2). All the functions satisfying (2.1) and the first 
condition (2.2) for x>O are proportional to gl(x, x', d), so that condition (2.8) supplies 
all the eigenvalues k of the Sturm-Liouville problem if we can guarantee that 
gl(x, x', d,,) and g2(x, x", An) taken as functions of x are not identically zero. Conversely, 
it is evident that ifeitherg,(x, x', d) SO we obtain a spurious zero of this one-ditnensional 
Bogomohy condition. In any case, we may take the limit x 'd0  and x"d0, so that 
g(O,O, A) = O  is an eigenvalue condition defined on a single point corresponding to a 
surface of section in one dimension. 
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Though the theory in this section is entirely elementary, it will serve as an important 
reference for theensuing discussion. It should then beemphasized that thegi(x, x', A )  are 
not the usual Green functions adopted in the treatment of Stum-Liouville problems. I t  
is customary to define the Green function for the problem (U), (2.4) with A = O  in 
(2.3). The resulting Green function is then used to turn the problem with / z # O  into an 
integral equation. 

Our Green functions gl(x. .Y', A) and g2(x, x', A) can easily be constructed in the 
usual way. If uI(x) is a function that satisfies the homogeneous version of (2.3) and the 
first condition (2.4), whereas uI(x) satisfies the same equation but the second boundary 
condition, then 

(2.9) 

and we have a similar expression for g2(x, x', A). Inserting these into (2.8), we obtain 

Therefore, f ( x ' ,  x", A )  is proportional to the Green function for the complementary 
Sturm-Liouville problem where the equation has coefficients r ( ( x ) ,  sl(x). t , ( x )  for x < O  
(with the corresponding boundary condition) and r Z ( x ) .  . . for s > O .  However, the 
coefficient in (2.10) is not the correct one for this Green function; indeed, it vanishes 
when 1 is an eigenvalue. The coniplenientury Green function also vanishes if u,(x') = O  

The simplest example of the present theory is the one-dimensional Helmholtz 
U > ( X " )  =o. 

equation 

- dZ v ( x )  + k 2 ? J ( X )  = 0 
dx2 

(2.1 I )  

with the Dirichlet boundary conditions u(ul) = v(-u2) =O. The easiest choice is then 
r l ( x )  =&) = r ( x ) =  I ,  sI(x) =s2(x) = O  and l t ( s )  = f 2 ( x )  = - I .  The Green functions 
gl(x, x', 1) and g2(x, x', A) will then depend exclusively on the choice of ai and a; and 
the boundary conditions there. It can be verified immediately that for the Dirichlet 
boundary conditions 

sink(x-al)sink(x'+ai) 
sin k(al +a \ )  

sin!&'-a,) sink(x+a;) 
sin k(ul + a ; )  

(XGX') I gl(x, x', k2)  = (2.12) 

and 

(2.13) 
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The eigenvalues of the original boundary value problem are 

ni IT 

ai +a2 
k,= - (2.14) 

so we cannot use ai =a2 and a;=ai lest gl and g, have singularities at the eigenvalues. 
The eigenvalues are correctly given by 

sin k(x-al) cos k(x+a2) -sin k(x+a2) cos k(x-al) =sin k(ai t a2) = 0 (2.15) 

as given by (2.10). However, we also obtain spurious zeros for k(.T'+ai)=inla and 
k(x"-a;)= rri2a. These extra zeros depend on our choice of x', x", a; and a; .  but they 
are also present for alternatives to the Dirichlet boundary conditions. 

The only way to avoid the spurious zeros in the one-dimensional Bogomolny condi- 
tion is to push the boundaries a; and a; out to infinity. We can then construct the 
outgoing Green functions appropriate to our problem from the outgoing free Green 
function 

(2.16) 
I 

go(x, x', k2)=-exp(iklx-x'l) 
21k 

by the method of images. Indeed, the Green function 

(2.17) 
1 

2ik 
gl (x, x', k2)  =- [exp(iklx - x'l) - exp(iklx + X I -  2a1l)l 

is outgoing at x+-w and satisfies the Dirichlet boundary condition at x = a , .  For 
x>x',g, has thesameformas(2.9) with c,=k- ' ,  uI(x)=sink(x-al) asin (2.12), but 
ul(x')=exp[ik(al-x')]. This choice of UI(X') is never zero. so it will not contribute 
spurious zeros to the eigenvalue condition. Choosing both g, and g2 as outgoing Green 
functions over semi-infinite intervals guarantees that f=O, as defined by (2.10), is a 
necessary and sufficient eigenvalue condition for the Helmholtz equation. 

I t  is also instructive to usegl in the form (2.17) directly in (2.8) (without decompos- 
ing it into U I  and UI) together with g2, obtained from (2.16) by exchanging al+-a2 .  
We then obtain 

&c", x', kz) = -- {exp(iklx"-x'l) -exp[ik(lx"-x'l + 2al + 2az)]} 

which may be interpreted as the interference of the free Green function for direct motion 
from x' to x" with the motion that bounces once on both walls on its way from x' to 
x". It is this second motion which would correspond classically to a Poincard map for 
x'+O and x"-+O, so we can follow Bogomolny in considering the eigenvalue condition 
as 

T(k2)Eexp[ik2(al +a2)]=1.  (2.19) 

(2.18) 
1 

2ik 

(The direct motion degenerates to the identity as x"+O and x'+O.) 
The above example can be generalized to any Sturm-Liouville problem that results 

from the separation of the Schrodinger equation. For non-singular boundary conditions 
at a: and a; we obtain real Green functions of the form (2.9) such that ul and ul are 
functions with nodes. As 1 changes continuously, these nodes sweep through the origin, 
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generating unwanted zeros in (2.10). However, it is always possible to define the auxili- 
ary Green functions such that the boundary conditions at U;  and ai are singular, that 
is, gl and g2 are outgoing Green functions. 

A M Ozorio de Abiaida 

3. The quantum Poincark section 

A Poincar6 section in classical dynamics may be defined as a section Z in the L- 
dimensional position space. This eliminates one coordinate, while the corresponding 
momentum is then constrained by the condition that energy is conserved. The position 
in the full configuration space will be denoted here by the lower case letter q, whereas 
the capital letter Q will be reserved for its restriction to an (L - 1)-dimensional surface; 
likewise, the corresponding momenta will be p and P. All specific examples will be 
restricted to L = 2 ,  with q = ( x , y )  even in the case of non-Cartesian coordinates. The 
section divides the accessible position space into two parts, VI and V 2 ,  as depicted in 

E 

Figure 1. The accessible volume of configuration space, V. is divided by the section Z into 
two regions. V, and V,. The exterior boundary is then composed of B, and 8,. 

figure 1. So for separable coordinates Z corresponds to the surface x=O. Though 
represented as bounded in the figure, we may also consider the case where VI and 
Vz-w. However, for any given energy, it is presumed that the classical orbits are 
bounded and that they will repeatedly reintersect Z. The first return Q of each orbit 
originating on each point Q of Z. such that the momentum transverse to Z has the 
same sign, establishes the Poimar6 map (P, Q)-(P‘, Q). 

The construction of the Poincark map is only possible if we know the classical 
motion in VI and Vz. Likewise, we can only construct a corresponding quantum map 
from the knowledge of the quantum mechanics in VI and V2.  In Bogomolny’s procedure 
this is supplied by a pair of Green functions Gl(q, q’, E )  and G2(q, q’, E )  with the 
following properties: 

(i) Gl(q, q’, E )  and G2(q, q’, E )  satisfy the inhomogeneous Schrodinger equation 

( E -  W d ,  q))Gj(q, q’, E)=G(q-q’)  (3.1) 

inside the region 6. 

boundary conditions as the eigenfunctions of H(@, 4). 
(ii) On the boundaries B, of the V,  (see figure 1) the G,(q, @, E )  obey the same 

(iii) Both Green functions can be arbitrary on P. 
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In the subsequent argument there are points where it is necessary to extend VI+ VI, 
beyond Z up to Cl,, as shown in figure 2, and V2-)VzP in the same manner, so that 

L 

Figure 2. The volume VI., with boundaries 
is true of VZs. 

and Z I e ,  includes the section Z. The same 

VI, and V21 overlap. Condition (i) above will then apply to L5=, and condition (ii) then 
refers to the slightly larger boundaries. 

In analogy to the treatment of the one-dimensional problem in the previous section, 
we may define the Green functions Gj(q, q', E) as the solution of (3.1) in a region 
bounded by the closed surface B,+ E;, that includes 5. The Hamiltonian must coincide 
with H ( i ,  q) inside &, but it can be defined arbitrarily in the remaining accessible 
space. Evidently we may take B; out to infinity whether B, is finite or not. 

It is now necessary to make the hypothesis that any eigenfunction of the full problem 

(3.2) 

in VI + V 2 ,  with specified boundary conditions on E,  + E 2 ,  can be written on the right 
side (VI,) in the form 

Hi, 4) Ur&) = E"W"(9) 

, 
Vidq)= J Gl(q, Q, E)PI(Q) dQ. (3.3) 

Elr 

In other words, V , d q )  has the form of a single-layer potential. Restricted to one 
dimension, this condition is simply that the wave function is proportional to gl(x, x', E ) .  
In this case it was found that, depending on the way that gl was defined and on the 
choice of x', g,(x, x', E )  may be identically zero. So, even though (3.3) automatically 
satisfies the correct boundary value condition on Bl , we cannot assume that all solutions 
have the form (3.3). 

The layer potential defined by (3.3) has a discontinuous derivative across Cl,, just 
as gl(x, x', E )  has a discontinuous derivative at x=x'. Because of this fact it cannot 
represent a smooth eigenfunction of the full problem on both sides of E,<. Suppose, 
though, that we can exactly match this wavefunction along C to ndq) defined in V2s 
by (3.3) with the exchange of suffixes 1 and 2. We can now use the functions wE(Q)= 
wlE(Q)= n E f Q )  and (dwJdn)(Q), where (dldn) denotes the normal derivatives to Z, 
as initial values for a Cauchy problem for (3.2). Under very general conditions the 
solution exists and is unique (Smimov 1964), so this coincides with both ylh(q)  on the 
right and wlb(q) on the left. Since both of these wavefunctions satisfy the appropriate 
boundary conditions, the matched wavefunction is necessarily an eigenfunction. 
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The matching of both the wavefunction and its normal derivatives along Z implies 
that 

(3.4) 1 d 
-Gz(L?, Q ~ A ~ G I ( Q , Q I , E )  pz(Pz)=O. 

Thus, if the representation (3.3) for an eigenfunction exists, we obtain a matching 
condition for the eigenvalues E,,. Indeed, the square brackets in (3.4) have the same 
structure as in the eigenvalue condition (2.8), if we notice that taking the limit &-+O 
fixes Ql and Qz on C, which is simply the origin in one dimension. However, we cannot 
immediately divide away the unknown functions pl and p 2 ,  so it is better to review 
Bogomolny's original procedure. 

The idea is to use only one layer potential (3.3) and to extend i t  to the other 
side. I n  Bogomolny (1992) it is presumed from the start that the resulting pIE is an 
eigenfunction, but then i t  becomes impossible to assess whether the method provides a 
sufficient eigenvalue condition. I n  the one-dimensional problem it is obvious how to 
extend the solution smoothly from one side to the other for any energy. For higher 
dimensions we have two ways. The Helmholtz equation has analytic solutions (Smirnov 
1964) and hence we may use analytic continuation. In the general case we can  solve 
the Cauchy problem in V, using vl(Q) and (d/dn)wl(Q) on Z as initial conditions. 
The resulting smooth solution on VI + V2 that satisfies the correct boundary condition 
on El will be referred to simply as yE(q) from now on. 

To obtain the condition on p(Q) for ydq) to be an eigenfunction of the full 
boundary value problem, we now combine (3.1) and (3.2) to obtain Green's identity, 
with the aid of Stokes's theorem as in Bogomolny (1992): 

where the point q" is chosen in VI (and hence outside V2) and (a /&)  is the outward 
normal derivative to the boundary. If Gz(q, q', E )  has no pole at E'= E, we may elimin- 
ate the second integral by choosing E'=E. Thus, Green's identity is reduced to 

If yE(q) is indeed an eigenfunction, the first integral in (3.6) cancels, since both tyE 
and Gz satisfy the same boundary condition on 8 2 .  It is now possible to insert (3.3) 
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into (3.6), since yg= yI6 on C. Therefore, changing the order of integration, we obtain 
r 

where 

@q". Q, E)=-  dQ Gi(Q. Q, E )  G2(4", Q. E )  
a :is, i 

(3 .8)  

we now obtain eigenvalues of the full problem as a 

a 
an -Gdq", Q, E )  - GI(€?, Q. E ) ] .  

By restricting q to lie on 
compatibility condition for (3.7) to have a solution 

det[C(Q", Q .  E ) ] = 0  (3.9) 

i.e. the operator 6, taking functions on CI, to those on Zzc, must have a zero eigenvalue 
at the energy E,. By taking the limit E-0, (3.9) becomes a condition on the Green 
function for the Poincark section Z. 

There are two possible problems with this eigenvalue condition. It  is possible that 
not all eigenfunctions of the full problem can be expressed in the form (3.3), in which 
case (3.9) is not a necessary condition. On the other hand, if the operator GI in (3.3) 
has a zero eigenvalue for a given energy, (3.7) will also be zero for the corresponding 
eigenfunction pl(Q). Then Bogomolny's condition will not be sufficient. since it will 
have spurious zeros. This is the situation that turned up in one-dimensional Stum- 
Liouville problems, so it will be investigated in the next session for the special case of 
separable systems. 

4. Separable systems 

All the cases where the Schrodinger equation is separable in two or three dimensions 
are discussed by Morse and Feschbach (1953). Rather than attempt some fancy notation 
to cover all cases, it is more instructive to consider two simple but typical examples. 

t '  

- 0; - 0 2  01 

Figure 3. The rectangular billiard has Dirichlet boundary conditions at y=O and b. and at 
.Y =a ,  and -a2, The auxiliary Green function GI has Dirichlet boundary conditions at the 
same values of 1' and I = O ,  and ( -a ; ) .  whereas G2 satisfies the same boundary conditions 
at x=o; and ( -a?) .  

The first is the rectangular box of width al +q and height h as shown in figure 3. We 
may either consider the billiard problem where Y=O, or the separable problem where 
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V(q)  = V(x, y) = K(x) + V,.( y), The Schrodinger equation 

A M Ozorio de Alnieidu 

(in units where fi2/2in= I )  then has solutions ~ ( x ,  y ) = X ( x )  Y(J’),  where 

(4.2) 
d2 - Y(y) + [a2- VJJ’)]  Y(y) = 0 
dy’ 

and 

(4.3) 
d2 

dx’ 
- X ( x ) + [ E - a ’ -  J’,&3]X(x)=O. 

To test Bogomolny’s eigenvalue condition for this system, let us choose Dirichlet 
boundary conditions and the section Z to be the segment of the y-axis within the box. 
We may then obtain GI as the Green function for a similar box with the same height, 
but with boundariers at U ,  and -U; and G2 as the Green function for the box with 
boundaries at U; and -aL. We then obtain one-dimensional Dirichlet problems for (4.2) 
and (4.3) with eigenfunctions ( v ln ) ,  (xlm), and ( ~ 1 r n ) ~  such that in the case of a 
billiard (V=O) 

nny 
(y1n)ccsin- 

b 

n7nx (XI m),ocsin -. 
uj+u; 

The spectral representation of the Green functions is then 

(4.4) 

where in the case of a billiard E,=a’=(nn/b)’ and ~ , , , = ( r ~ ~ n ) ’ ~ ( u , + u ; ) 2 .  But, if we 
now recall that the spectral representation of the one-dimensional Green functions of 
section 2 is just 

we may rewrite (4.5) as 

(4.6) 

(4.7) 

where 

G,,,(x, J’, E)=g , (x ,  x’, E -  E,,). (4.8) 

So the two-dimensional Green functions are diagonal in the n-representation (i.e. the 
vertical momentum representation, tangent to the section) and the diagonal elements 
are the Slum-Liouville Green functions. 
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The layer potentials (3.3) have the form 
b 

v&,v)=j0 dy' G I ( - ~ , Y ,  - -EI ,Y ' )P(Y ' ) .  (4.9) 

So, if we insert (4.5) in this integral, using (4.7) and (4.8), and define 

P,= lob dy' + I  Y'>P(Y')  (4.10) 

we have 

The first problem to be faced is that, though the set of eigenfunctions ( y l n )  is 
orthogonal, it is not complete for square-integrable functions in the interval (0, b). For 
instance, in the case that V=O, the complete set includes cosines as well as the sines in 
(4.4). Thus, it is  possible to choose p ( y )  orthogonal to all the (VI n )  and hence obtain 
vIE=O for all energies. 

This problem disappears if we restrict the layer density to have the same boundary 
condition as (yI n) .  For this set of functions the (y l  n )  form a complete basis, so the 
coefficients p, uniquely define p ( y )  and vice versa. Now, the solution of (4.3) that 
satisfies the correct boundary condition at x = a l  is proportional to gl(x, --E, E-&)  as 
discussed in section 2, so that (4.1 I )  represents the complete set of functions that satisfy 
the correct boundary condition along B , ,  except for the energies where 
g l ( x ,  --E, E-E,,)=O. For each of  these particular energies we may choose 
p ( y ) a ( y l n o )  and hence obtain a spurious zero of the Bogomolny condition. 

The above considerations basically apply to any other separable system. In the case 
of a radially symmetric potential, the Schrddinger equation 

(4.12) 

separates into the pair of equations 

(4.13) 

and 

(4.14) 

In the case of a Dirichlet problem for a ring centred on the origin, n will be an integer 
for F(0)  to be periodic, but this is not necessary if the problem includes only a segment 
of the ring. In any case, we can define the Bogomolny section to lie on the curve r =  
ro,  within the ring, and then define x = r - r o  and u(x) = R(r)  so as to apply the Sturm- 
Liouville theory in section 2. 

Associating y = 0 we can again obtain the Green functions G, in terms of  the spectral 
decomposition (4.5) with 

(YIn)=e'"' (4.15) 
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and, in the case of a billiard, 

A M Ozorio de Alnteidu 

(XI P B ) , ~ =  A,,,J.[E;,?(x+ rO)i + 5,,, r,,[~,J,i~(.r+ rdi (4.16) 

where J,,, and Y. are Bessel and Neumann functions (Abramowitz and Stegun 1964) 
and the energies 4,. are the eigenvalues of the Sturm-Liouville problem with Dirichlet 
boundary conditions at "=U, and x=uj. We now define the layer potential (4.9) as a 
function of the layer density. Everything goes through as before, but we note that in 
the case of eigenfunctions of the full ring we will automatically use a periodic p ( y ) .  
Thus, there is no possibility of a density that is orthogonal to the basis formed by the 

I n  all the cases where the boundary value problem is separable and the surface of 
section is a coordinate surface x = O  for one of the coordinates that achieves the separa- 
tion, we may express the wavefunctions for x>-sI in terms of one-dimensional Green 
functions (4.1 I ) .  Using the decomposition (4.7) of the auxiliary Green functions, 
Bogomolny's complementary Green function becomes 

(YI n>. 

C ( E * , Y " ,  -El,Y' ,E) 

- G z ~ " ( E z , x , E ) - G G I , , ( x , - E I , E )  dx d I,,-,, ~ o b d ~ ~ < ~ " l ~ ) ( ~ ~ l ~ ' )  

hz 
2 "  

(4.17) =- c VI n> <.I J ) E ( E z ,  -cl, E- E n ) .  

This is a diagonal operator in the n-representation, hence the Bogomolny condition 
(3.9) reduces to 

f ( E 2 ,  --E,.E-E,)=O (4.18) 

for some n. I t  was shown in section 2 that a sufficient condition for an eigenvalue of 
the Sturm-Liouville problem is (2.8), which is identical to (4.18); hence Bogomolny's 
condition is a sufficient condition for the two-dimensional eigenvalue problem. 

If we choose auxiliary Green functions G,(s, x', A) that are outgoing at the free 
border instead of standing waves, we can eliminate spurious zeros. Bogomolny's condi- 
tion is then necessary as well as sufficient. These outgoing Green functions were obtained 
explicitly for the one-dimensional Helmholtz equation (2.1 1 )  that results in the solution 
of Helmholtz's equation in a rectangle. These exact eigenvalues were also obtained by 
Lauritzen (1993) within the semiclassical approximation. For the Helmholtz equation 
in a ring, the outgoing Green functions are obtained by choosing the functions u,(.Y) 
in (2.9) as  Hankel functions (Abramowitz and Stegun 1964) instead of real combina- 
tions of Bessel and Neumann functions. 

It is important to note that these outward Green functions, which are necessary for 
the full validity of Bogomolny's condition for separable systems, correspond in the 
semiclassical limit to the Green functions used by Bogomolny (1992). Indeed, though 
the Green functions defined over finite regions also satisfy the three apriori stipulations 
of section 3, the existence of another arbitrary boundary multiplies the number of 
classical paths that start at XI, and return to C l c  in the complementary problem. 
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Conversely, even the exact complementary Green function can be split into two compo- 
nents (2.18) in the case of the rectangle. One is the direct propagator and the other 
describes the motion that proceeds by bouncing once off both walls. 

For sufficiently large n we obtain E,> E. The one-dimensional problem then reduces 
to the heat conduction equation instead of the wave equation; in other words, 
G,,(x, x‘, E )  describes decaying modes instead of propagating modes. These modes are 
not related to any zero eigenvalues of 6. Indeed, it  is evident that g(x”, x‘, k*) given by 
(2.18) is never zero when k is imaginary. 

Consider now the case where V,(y)=O in (4.2). but V,(x) is a symmetric double- 
well potential in (4.3). There will then be levels that are bound to the wells, that is, 
they are oscillatory only in finite regions to the right and to the left of the Poincark 
section at x=O. Not a single classical orbit will cross the section in the motion corre- 
sponding to these states, nonetheless, an appropriate definition of the Green functions 
furnishes the necessary and sufficient eigenvalue condition in the Bogomolny theory. 
Thus, in this case the eigenvalues would be said to depend on orbits that tunnel to 
and from the section. Let us now consider the limit x ” = h - + O  and x‘=-&t+O. The 
complementary Green function for the rectangle is then 

G(o, y ,  0. y’ ,  E )  = 2i J F E [ T ( E -  E“) - II(YI n> I Y’> (4.19) 
n 

with Tdefined by (2.19). This operator leaves invariant the subspace of functions (y l  n )  
with n < N ,  such that E,<E. Furthermore. we can define the unitary operator 

N 

W , Y ’ .  E ) =  1 ~ ( E - E n K Y I n ) < n I y ’ )  (4.20) 

which accounts for the quantum PoincarC map. Just as the classical Poincark map is 
defined over a finite region in the phase plane, its quantum version propagates a finite 
Hilbert space. Though we can define arbitrary squared integrable functions on the 
section E, it is only their projection onto a finite subspace that will propagate to a 
function with the same norm. The rest of these functions will decay into the evanescent 
modes. 

“ - 0  

5. Conclusions 

Can we generalize quantum surfaces of section to non-separable systems? The indica- 
tions from the semiclassical theory developed by Bogomolny (1992) are very encourag- 
ing. Even so, there may be aspects of the exact theory that differ qualitatively from its 
semiclassical approximation. What constitutes a good surface of section? The coordinate 
surfaces that were used in the previous section do not necessarily satisfy Bogomolny’s 
intuitive criterion that almost all classical orbits must cross it. The exact criterion cannot 
depend on the classical orbits, so it is better to define a good surface of section as one 
where all the eigenfunctions can be expressed as layer potentials (3.3). 

When we perturb a system from separability, a lot of the structure found in section 
4 will be lost, but the overall division into modes that oscillate at least in some regions 
and those that merely decay away from Z should be maintained, if it  is at all possible 
to generalize the exact theory. The dimension of the Hilbert space of the functions 
p ( Q ) ,  for which the layer potential propagates, is finite, but will increase with E. 
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Another danger for generalizations is that of further spurious zeros in the eigenvalue 
condition. The problem is that the second integral in (3.6) could cancel, without wdq) 
satisfying the correct boundary condition. Consider, for instance, the case of the 
Dirichlet boundary condition on B2.  Then Bogomolny's condition would be satisfied 
if 

Therefore, if we consider wE(Ql 8J as the density for a double-layer solution of 
Helmholtz's equation, Bogomolny's condition will be satisfied if &, is a nodal surface 
of Y(q). Since w15(Ql at) depends linearly on p 2 ( Q ) ,  we obtain a linear equation for 
spurious zeros. 

These extra zeros cannot arise for coordinate sections of separable systems, since 
the n dependence is a multiplicative factor of the integral for each orthogonal mode. 
Hence, in this special case the integral over x =  -a2 only cancels if yh(Q) satisfies the 
boundary condition. 

Whatever the difficulties of generalizing Bogomolny's condition, we can see that it 
is an exact algorithm for calculating energy eigenenergies of separable systems. I t  is 
true that the absence of spurious eigenvalues can only be guaranteed by a more restricted 
definition of the auxiliary Green functions than in Bogomolny's original work, but this 
only brings them more in line with his semiclassical theory. 

Another important feature of the semiclassical theory is the unitary Poincark map. 
This was only obtained for a very restricted example in which the quantum mechanics 
coincides wvith its semiclassical limit (Lauritzen 1993)). I t  therefore requires further 
work to extricate the unitary map from the complementary Green function, even for 
more general separable systems. 
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